Browsing posts in: Electronics

Sequence Controller

I’m working on a new display for the upcoming holiday season – actually a couple of them – and I need some new controller hardware to drive them.

Here are the basic requirements that I jotted down:

  • 8 outputs (perhaps expandable to 16)
  • Each output can drive 1 amp at 12V
  • Designed to deal with sequential animation (do this on output 1, do something else on output 2, etc.)
  • Dimming support if practical
  • Easy setup and and configuration
  • Compact & cheap (within reason)…

With those in mind, I started thinking about components…

My go-to microcontroller has been the ESP8266 (in NodeMcu mini d1 form) for a while, because it’s so small and cheap. But it’s a bit weak on output pins; you can get 7 pretty easily, but to get more you may have to play tricks. Supposedly you can get to 11 with those tricks which would be okay for 8 but would make 16 possible without some sort of I/O expander.

Which brings me obviously to the ESP32. Which is honestly a ridiculously capable device; 160 Mhz, 520K of SRAM, dual core (if you need it), Wifi, bluetooth, and pretty much all the I/O support you could want. It’s a little more pricey, about $4 from China in single quantities.

For this project, it has loads of output pins, and 16 independent PWM channels, which fits pretty well into my requirements. And I’m hoping I can adapt my existing controller software – which is optimized to drive WS2812s – to work in this new scenario.

MOSFETs

The switching will of course be handled by n-channel MOSFETS. My WS2812 expander uses DPAK (TO-252/TO-263) packages, which work great but take up a lot of real estate. That was okay for a small number of channels, but for 8 channels I’d like something smaller and I don’t need to be driving 10 amps per channel, which was my design goal for the expander.

So, my requirements are:

  • 1 amp @ 12V
  • Switchable from 3.3V outputs (I could add a transistor to drive, but I’d rather avoid the complexity)
  • Low Rds at 3.3V
  • Small package
  • Enough power dissipation

I started doing some parametric searches in DigiKey and on Octopart, narrowed things down, and came across the BSR202N from Infineon. How does it stack up?

  • 3.8 amps @ 12V (25 degrees, 3.1 at 70 degrees)
  • Specified behavior down to 2.5V.
  • Rds of 33 milliohms at 2.5 V.
  • SOT23 compatible package
  • 500 mW power dissipation

Those specs are honestly ridiculously good, especially the Rds. If I pull 3 amps through one of the channels, that gives me 0.033 ohms * 3 = 0.1 watts. Just a tenth of a watt to switch 3 amps. If I did that with a bipolar, it would be in the range of 1.8 watts (I’d definitely need a heatsink) and I’d lose 0.6 volts in the process.

In reality, it will likely be a little better than that since the Rds is lower at 3.3V, but I don’t know how much 3 amps will be heating it up and that will make the Rds worse. It will take some testing to see.

My only big concern whether the ESP32 has enough drive to deal with the gate capacitance while doing PWM, as with PWM it’s switching all the time, and slow transitions mean slower switching, more heating, and therefore worse Rds and more heating. I’ll need to do some testing, but my guess is that with a PWM rate of 250 Hz it probably won’t be a significant problem in typical usage patterns.

If it does turn out to be an issue, I’ll add a small bipolar in front of the mosfet. That will give me lots of drive for very fast switching plus a higher Vgs for a lower Rds. It will invert the PWM so I’d have to flip things in software, but that’s simple enough. I’m hoping to avoid it because it will require two resistors per channel, so it’s a nice 8 MOSFETs by themselves or with an added 8 bipolars and 16 resistors, which makes building the boards more of a pain (the cost is of the bipolars + resistors is a few cents per channel).

Expandability

My current thought is to make the boards stackable like arduino shields, and I think I have a scheme that works.

I have the ESP32 boards in my hot hands, but I need to get my hands on some of the MOSFETS to do testing. In parallel, I’m going to start the board design.



Fixing Bally/Williams Opto troughs

I had a problem with my WCS serving multiple balls, and I thought I’d share the approach I used to fix it.

I had looked at the switch tests, but the problem was somewhat intermittent so that didn’t really help.

I pulled the whole trough unit out; that took:

  • Two screws from the bottom
  • Removing the bottom playfield cover below the flippers
  • Removing 5 (?) screws from the top

That loosens the trough. I then took out the 4 screws that hold the solenoid to the trough, unplugged the connectors, and it was out.

Test the LEDs

I started by testing the LEDs. Through trial and error, I found that a 1K ohm resistor and a 5V supply resulted in a current of about 4mA, and since that’s within the spec for most LEDs, I stuck with that. Hook one end of the supply to the common and the other to the individual LED pins, and verify that they all light up.

They’re infrared LEDs, so you can’t see them, but pretty much any digital sensor can; a camera, your phone, etc. It’s simpler to remove the board from the trough before you do this.

All the LEDs on my board checked out.

Test the phototransistors

Keep your setup to turn on the LEDs as we’ll need it for this step.

Using a ohmmeter, connect one end to the common and then connect the other end to the pin for the LED that you currently have on. You should see about 4K ohm when the LED is on and something around 1M ohm when your hand is blocking the light. If you don’t see any difference, swap the leads from the ohmmeter around. You may have to turn the lights out to get 1M on some of the phototransistors as you can get room light reflecting into them.

Work your way down through each LED and phototransistor and verify that you are getting the right settings. If you find one that isn’t reading correctly, or consistently, it is *most likely* a connection issue.

I would start by verifying the connections; with one lead connected to the common pin, verify that you have continuity to all of the phototransistors; one of the pins on every one should be zero ohms (or close to it) and connected to the common.

Then repeat that from each of the LED pins on the connector to the non-common phototransistor pin. You should see zero ohms on each of those as well.

My issue turned out to be a rework issue; the #6 phototransistor was replaced by somebody and they either messed up the through-hole or didn’t resolder it correctly, so it was only making contact on the LED side of the board sporadically. Rather than pull the board off and try to resolder the phototransistor, I added a small jumper wire from the pin to the phototransistor.

Everything tested fine, and no more double balls.


Pogo pins + laser cutter = test fixture

I sell a small WS2811 expander board on Tindie:

WS2811 / WS2812 Extender 1

It’s not a particularly complex board, but it still needs to be tested, and at minimum that test requires 9 connections to the board. For the prototypes I just soldered wires on, but for the ones I sell that would not be a good idea, and it would also be a fair bit of extra work.

I decided to build a pogo-pin test jig, and since the approach I came up with was different than the other approaches I’ve seen I thought it would be worth sharing. I’m going to be targeting my laser cutter for fabrication, though I could have chosen to use my 3D printer instead.

Pin design and layout

I’m going to be using Kicad for my examples here; if you use something different, you’ll need to figure out how to do some operations ourselves.

Here’s the starting design:

image

For testing, I need to provide connections to a subset of the all of the headers. I’m going to do the design for all of the headers and then just populate the ones that I need. For many boards, you would have test pads that are unpopulated as the targets for your testing.

I need a way to get this into a format I can use with my laser cutter, and SVG is the one I’d like. Kicad can export to SVG just fine; you use the Gerber export and choose “SVG” as the format (no, it doesn’t really make a lot of sense). I’ll be using the pins to connect to the copper, so I’m going after the copper layer.

Once it’s exported, I can open it up in Inkscape for editing:

image

I’m going to clean this up to get rid of all the parts that I don’t need. In some cases, the components are grouped and I need to ungroup them.

image

What I want to do is put a pogo pin at the middle of each of these. These are the pogo pins that I’m using:

image

They are spec’d to have 1mm shafts and they’re quite close to that, so we’ll plan our design using that.

At this point, we need to account for one of the things that Inkscape does. The UI allows you to set the size of a circle, but the size that you set is the outer side of the circle, and that includes the stroke width. If your stroke width is 0.25mm and you set the circle to 1mm, the actual circle will only be 0.5mm.

This confused me for a while when I did my first prototype. And then it confused me again when I did this version. The fix is to set the stroke width to 0 – or something very close to 0 – and use a filled circle instead.

Here’s a picture of a pad and a 1mm red circle I want to center inside of it:

image

I need to get that red circle centered inside the pad. Because of the way Inkscape works, you need to start with the small circle on the lower left. I don’t know why. Then do the following operations:

  • Drag select both objects.
  • Choose “align top”
  • Choose “align right”
  • That should move only the red circle.
  • Align center on the horizontal axis
  • Align center on the vertical axis.

To select the circles I need to drag a region; it doesn’t work trying to select the object. I don’t know why.

That gives us the following:

image

Eventually, I will want one of those for every pin. But I need to do some test sizing first.

The beam on a laser cutter is pretty thin, but it still has some width. That means if I cut out a 1.0mm circle, I’ll get one that is just a bit bigger than that, and the pins will be loose.

I’m going to use the row of 6 pads at the top for test sizing.

image

You can’t tell from the picture, but these are sized 1.0 mm, 0.975 mm, 0.950 mm, 0.925 mm, 0.900 mm, and 0.875 mm.

Off to the laser cutter!

IMG_9553

The test fixture cut out of 0.1” (2.6mm) maple plywood.

The 0.875mm hole is the only one that is close; it’s a tiny bit snug in the middle (the laser beam is shaped like a very tall “X”, so the hole is thinnest at the focus point in the middle and a little bigger at the top and bottom).

Based on the step in sizing between holes, I’m going to size them all to 0.85 mm.

image

That’s the completed design. In my laser cutter (a GlowForge), it groups the elements by color, so it’s easy for me to tell it to cut the red circles and not the black pads. If you want to simplify the cutting part, you might want to delete the pads.

Back to the cutter.

IMG_9554

I cut 3 identical plates plus a spacer. The stack will have two plates with holes, then the spacer level where the wires will be soldered to the pins and finally a plate at back. The wires will all come out through the spacer holes on the left. It’s hard to tell from the picture, but the pins are inserted so that they stick out the back enough for the bottom of the pin to be flush when the spacer and bottom plate are added.

Oh, and that lower-left piece is upside down…

Next is hooking up the test wires. There are 22 pin holes, but two of them need only to be bridged and seven connected with wires for testing.

IMG_9560

That’s a rather poor picture of the wires attached to the pogo pins. After they are all soldered on, the back piece goes on and then I taped it together with blue tape so the pieces are apart.

That would normally be the last step, but the high-current pins on this board are set up using 3.96mm headers instead of the 2.54mm that my pogo pins are designed for, so those pins just go right through the bulbs. With a little bit of play using a soldering iron, you can get a blob of solder on each of those pins and then it will work fine.

Here’s the completed tester with a board just sitting on it.

IMG_9562

The yellow and green wires come from an ESP8266 that I use to drive it, the red and black are 12V power from a repurposed XBox 360 power supply, and then the white wires are the grounds for the loads (the board provides both positive and ground for each LED, but I only need the grounds to do the testing).

I made a quick video showing the tester in action.


MVI_0093 from Eric Gunnerson on Vimeo.


EagleDecorations Ornament Creation Instructions

Thank you for buying one of our ornament kits. These are the generic instructions that apply to all of our ornaments; please look at specific instructions for your kits for more details.

Tools & Supplies

You will need the following supplies:

  • A small soldering iron
  • Solder
  • Needle nose pliers
  • Diagonal cutters or other tool to trim leads and wire
  • A power supply for the kit your ordered – either a 5V USB charger or a 12V power supply.

LEDs and Resistors

To keep LEDs from burning up, we will be including resistors that will limit the flow of current through the LEDs and equalize the brightness between different ornaments.

Depending on the color of the LED that we are using the the voltage we are using for the ornament – either 5 volts or 12 volts – we will be connecting chains of 1, 2, or 4 LEDs to a single resistor. The instructions for your kit will tell you how many LEDs to put in the chain for each resistor. If there are multiple colors in your ornament, each color may use a different number of LEDs in the chain.

Creating chains

Here is an example of creating chains of 2 or 4 LEDs, taken from the yellow star ornament:

IMG_7062

Note that the LEDs are placed with the longer lead towards the outside of the ornament. That is the basic pattern we use for all of the ornaments.

IMG_7063IMG_7064

In these pictures, we are making chains of 2 LEDs. In the left picture, the longer lead on the closest LED is bent towards the shorter LED of the next LED. In the second picture, the short LED on the second LED is bent back towards the long lead from the first LED. Connections between LEDs should always be done in this manner.

Here is what it looks like after creating two chains of 2 LEDs:

IMG_7065

A 4 LED chain looks like this, with 4 LEDs connected in a chain.

IMG_7066

A full set of chains

The outline of an ornament will be a series of chains; it will look like this:

IMG_7068

Adding resistors

After the chains are created, we will need to add a resistor for each chain. The resistors are always connected to the inside (shorter) lead at one end of the LED chain:

IMG_7069

When all the resistors are connected, it will look like this:

IMG_7070

Hooking the chains together

The next step is to hook all of the chains together. We will do the insides first. This is done with some of the bare copper wire included in the kit. Start by taking the wire and bending it into a rough approximation of the template, and then put that inside the wire.

We will be connected the currently unconnected end of each resistor to the bare wire.

IMG_7071

As shown in this picture, you may need to reroute the resistor wire a bit to make it easier to connect to the bare wire. Here’s a close up of that:

IMG_7072

Once all the resistor wires are soldered on, trim the resistor wires. Next up are the outer wires. The outer wires run around the perimeter of the LEDs and are soldered to the remaining unconnected LED lead. Make sure the outer wire does not touch any other wires.

It is very useful to clamp the outer wire down as you are routing it around. I use a little alligator clip:

IMG_7074

Here’s what it looks like when finished:

IMG_7076

At this point we would test by applying the appropriate voltage to the inner and outer bare wires.

Adding the power cord

Locate the power cord – either the USB one with the 5V kit or another one if you are building the 12 volt version.

At the bottom of the ornament, you will find two tiny laser-cut holes. The are for the zip-tie that will hold the power cable in place. Pass the zip-tie from back to front and then to the back again, place the power cable in approximately the location you want and lightly secure it with the zip tie. Solder the power cord wires to the two bare wires, verify that it works, and then tighten the zip tie. Cut off the extra.

Success! You have completed the ornament:

IMG_7080

Protecting the wires

The wires only carry low voltage, so there is little shock hazard.

If you want to waterproof the ornament, I have had good luck with 100% clear silicone sealant. Make sure to cover the base all the LEDs and over and under the resistors and all wires. This approach has survived multiple holiday seasons outside in wet and cold weather, but there is no warranty for outside use.


WS2811 Expander Part 6: of MOSFETS and voltage drops…

After I wrote the stress test article, I decided to put a voltmeter across the drain and source of the MOSFET and figure out what the voltage drop was. I hooked up the output to an LED ornament, watched the brightness cycle up and down, and put my probes on the MOSFET.

What I expected was pretty simple. In the sweet spot of the MOSFET I’m using, it claims a Rds – resistance between drain and source – of 10 milliohms. That means I should expect a voltage drop at 5 amperes of:

V = 0.01 * 5 = 0.05 volts

That low voltage drop is one of the reasons to use a power MOSFET; a bipolar transistor would have a voltage drop of about 0.6 volts, and therefore waste more power and get hotter.

The voltage jumped around a little, and settled down at full brightness:

0.8 volts

Okay, that is really unexpected; I played around with different voltages, and I still got 0.8 or 0.9 volts.

My first thought was that the MOSFETs that I got from Ebay might be counterfeit, so I waited for my order of real parts to show up from Arrow, built a new board, and it read:

0.85 volts

This is really confusing, so I asked a question on Reddit’s /r/AskElectronics subreddit.

The first answer I got was that it might be the base diode because I had the MOSFET backwards.

So, I pulled out the datasheet for the MOSFETS and looked at my schematic and board in Kicad. As far as I can tell, everything is wired correctly.

A deeper answer suggested that if I was doing PWM (I had been testing at brightness = 250 because I knew that would be more stressful for the MOSFET than always on), I should test with always on. It also talked about gate capacitance.

<digression>

This is one of those cases where real devices diverge from ideal devices. FET stands for “Field Effect Transistor” – current through the source and drain is controlled by the field on the gate. You establish a field by the flow of current to charge it up to an appropriate voltage.  The amount of current it takes depends on the gate capacitance (described as “Input Capacitance” on the datasheet). For the MOSFET to turn on, you need to flow enough current to establish whatever voltage you want on the gate.

Or, if you think of the gate as a capacitor, it takes a bit of time for it to charge. In my case, the time it takes to charge will be controlled by the pull-up resistance and the capacitance.

Let’s say we are running at 5V, and our MOSFET has 1nF input capacitance (pretty close), and we are charging through a 10K capacitor.

This calculator says that the time constant is 0.00001 seconds, or 10 microseconds.

</digression>

So, I went and changed the animation code to run all the way to full on – luckily my code is running on an ESP8266 and animations can be changed over WiFi – and rechecked the voltage drop.

Would it surprise you if I told you it was 0.8 volts? Probably not at this point…

Perhaps it’s my voltmeter; I have a nice Fluke but how about if I try using my oscilloscope (a Rigol DS1102D I picked up a while back)?

So, I powered it up, hooked it up, and looked at the waveform across the load. I showed the a nice PWM waveform…

But wait a second… I had updated the animation.

My debugging rule is that when things seem unexpected, back out a level and retest the assumptions. Usually one of those is wrong.

I started with my controller code. I suspected the gamma mapping code, so I added some Serial.println() statements and verified that, yes indeed, the colors were getting set to 255. So, that part was fine.

I next suspected the support library I use (the rather excellent NeoPixelBus). I read through a bunch of source but didn’t seem to be any issues. The code all looks fine…

Was the data getting to the WS2811 correctly? So, I fired up the scope again and hooked it to the data line. On full on, the data looks like this:

NewFile0

The WS2811 uses an encoding scheme where a short positive pulse means “0” and a long positive pulse means “1”.

That is a full string of ones; you can’t see all 24 of them, but trust me when I say they are there. You can see this switch back all the way to all zeros as the animation progresses.

So, the software is telling the WS2811 to go to full bright, but it is still turning off for part of the cycle. Here’s the output straight from the WS2811:

NewFile4

That little positive spike is 29.4 microseconds, which is about 5% of the 536 microsecond cycle time, so full bright is only 95% bright.

The cursors on the capture show the start of two sequential PWM cycles, and the scope nicely tells me that it’s updating at 1.87 KHz. Which is another weirdity, since every source I’ve seen suggests that WS2811s update at 400Hz.

At this point I’m beginning to wonder if I have a WS2811 clone. I thought it might be the same IC used in the SK6812 ICs, but the claim is that they have a PWM frequency of 1.1KHz which is less than I am seeing.

So, it’s off in search of some real WS2811s. It is really easy to buy cheap ICs made in China but is surprisingly hard to find an authorized source. There are lots of sources on aliexpress, some looking pretty shady. Octopart found me a 10-pack from Adafruit for $4.95. I finally found lcsc.com, which specializes in this sort of thing, and ordered some. They look to be WS2811S chips, but I can’t find any information on what the “S” means. More on that when they show up.

Back to voltage drop…

Since the WS2811 wouldn’t go into “full on” mode, I needed a test setup to do my testing. Here’s what I came up with:

image

In the right middle is the MOSFET, with clips connected to the lead and the body. In the picture, it is running only the LED Star, which pulls 145mA of current.

One of the fun things about MOSFETS is the gate holds onto the charge, so if you just touch the gate to 12v, it turns on and stays on. Touch it to ground, and it turns off, and stays off. I measured the voltage drop across the MOSFET.

I next decided to hook up my test load. I started with a single 50 watt bulb, a 4 amp load. I carefully hooked it up in parallel with the led star, and…

There was a loud “crack” and the led star went out. No magic smoke, but the MOSFET was toast. The gate was floating, and there wasn’t enough charge there to put it firmly into full conduction, so it was in the linear zone and quickly overheated, melting the plastic on one of my clamps. So… replace the MOSFET, make sure the gate is attached to positive, and try again. That worked, and the MOSFET was only mildly warm. Let’s try two bulbs for an 8 amp load. That worked, *but* there is no heatsink and it got hot pretty fast, so I unplugged it before it got too hot.

I collected some data and figured out that the Rds was about 90 milliohms, which is a lot higher than the 10 milliohms I expected. That was a mystery for about 8 hours, until I was writing this up and realized that I was measuring the voltage drop at the ends of the leads connected to the MOSFET. The thin leads.

So, I went back and measured right at the MOSFET, and got a Rds of 7 milliohms, a bit better than the 10 milliohms that was spec’d. So, yay!

Faster switching

Returning to our somewhat slow switching, here is what I saw:

NewFile2NewFile3

The negative transition is when the transistor turns on; notice how effortlessly and quickly it pulls the gate voltage down. And when the transistor turns off, note how long it takes it for the gate voltage to charge back up. It’s roughly 10% of the overall cycle time.

Which is a bit embarrassing; I chose the 10K value as a typical pullup value, not thinking about the fact that this was happening on every PWM cycle. It can only supply about 1 mA of current.

The most obvious thing to try is to replacing it with a 1K resistor. That will result in 10mA of current and should switch roughly 10 times faster. Can the transistor handle it? The datasheet says that the 2N3904 can handle up to 200 mA continuous, so that will be fine. Is the base resistor okay? Well, transistor has a DC current gain of at least 50, so that means we need a base current of 10mA / 50, or 0.2mA. The 5V from the WS2811 will push about 4 MA through the 1K base resistor, so that’s way more than enough. It would probably be fine with a 10K base resistor, actually.

I took one of the boards and replaced one of the 10K resistors with a 1K resistor and then looked at the gate drive:

NewFile5

In case it’s not obvious, the top version is with the 1K resistor and the bottom one is with the 10K resistor. More than good enough for my application.


WS2811 expander part 5: 12V stress test…

One of the points of the expander is to be able to drive bigger loads than the 18mA that the WS2811 gives you directly. Much bigger loads.

To do that, I needed something that would stress the system, and I needed to verify that the design worked with 12V.

First off, I needed to cut a new stencil uses the paste layer:

IMG_9501

That’s a bit nicer than the first one; there is adequate spacing between the pads this time.

Aligned it on the board, applied paste & components, and reflowed it. Here’s the result, still warm from the oven:

IMG_9502

All the components self-aligned nicely, no bridges, no missing wires. Perfect.

The only thing I need to do is get rid of the center pad for the MOSFETs, since they don’t actually have a center pin.

How to test it?

Well, I dug through my boxes and found a 5 meter length of 12V LED strip. It says that will be 25 watts. I hooked it up and verified that all 3 output channels are working. It’s running an animation that ramps from 0 to 255 over 2 seconds, holds for 2 seconds, and ramps down for 2 seconds. I chose that because the quick switching is the hardest for the MOSFET to deal with from a heat perspective.

But 2 amps isn’t quite enough. I dug out a 12V power supply that claims it can do 6 amps and hooked it up to one output channel:

IMG_9504

That’s the NodeMCU board in the upper right, powered by LED, the data and ground running to the board, and then some decently-hefty wires running to the board.

More load, more load, more load. I want something that soaks up the 12V. Incandescent car bulbs are nice but I don’t have any handy. But I do have an extra heated bed for my 3d printer; it’s a nice 6” x 6” pc board. Hooked that up in parallel with the lights:

IMG_9505

Ignore the breadboard…

This worked just fine. The board heated up to about 170 degrees, the lights worked fine, and the MOSFET on the driving board just *barely* heats up. My measurements show that it’s switching about 5 amps of current.

The only one that’s not happy is my cheap power supply, which is putting out a nice 10Khz (ish) whine when under load.

I switched over to run it on all the time to see how that affected things. After 10 minutes, the board is up to about 110 degrees, the printer bed is up to 240 degrees, and the 12V power supply is 125 degrees.

I think I’m going to rate it at 6 amps total; that gives a lot of margin, and frankly 70 watts is quite a lot of power for this application.


WS2811 expander part 4: Boards and Parts!

After a bit of waiting, the boards showed up from OSHPark. they looked fine as far as I could tell.

I had all the other parts to do a board, but I needed a paste stencil. I went into pcbnew, chose File->Export, and then chose to export the F.Mask (ie solder mask) layer to a SVG. I cleaned it up a bit to remove non-pad elements, went out to the laser cutter and cut a stencil out of 4 mil mylar:

IMG_9495

Everything looked pretty good; there was good alignment between the board and the stencil. The spacing between the pads looked a little tight, but it’s a fairly fine pitched board, so it was mostly what I expected.

I carefully aligned the stencil and taped it on, got the solder paste out of the fridge, and applied it. Pulled up the stencil and it looked crappy, scraped it off, did it again, and got something that looked serviceable though there was more paste than I expected. Hmm.

Got out the components:

  • 1 WS2811
  • 1 33 ohm resistor
  • 1 2.7k ohm resistor
  • 6 10k ohm resistors
  • 3 1k ohm resistors
  • 3 NPN transistors
  • 3 MOSFETS
  • 1 100nF capacitor

and it took about 5 minutes to do the placement. Here’s the result:

IMG_9496

I didn’t look at the picture at the time, but that’s a *lot* of solder paste.

Into my reflow oven (Controleo 3 driving a B&D toaster oven), let it cycle, seemed fine, here’s the board:

IMG_9499

Not my best work. Frankly, it’s a mess; there are obvious places where there is no solder, and obvious pins that are bridged together. I spent about 15 minutes with my VOM testing for continuity and there were 3 solder bridges and 7 unconnected section.

Something clearly went wrong. And I went back to PCBNew and it was *really* obvious.

The layer you should choose for your stencil is F.Paste, not F.Mask. Here are the two next to each other (Mask left, Paste right):

imageimage

The Mask layer sizes are positively giant compared to the paste ones. So, what happens if you use the Mask layer is that you have:

  • A *lot* more paste on the board, especially the small pads which must have double the amount
  • Solder paste with much reduced clearances.

What that means in reality is that when you put the components on, it squishes the solder paste together and connects pads that shouldn’t be connect. And then when you head it up, you either get bridges or one of the pads wins and sucks all the paste away from the other pad (how it wins isn’t clear, but it is clear that the huge MOSFET pads pulled all of the paste from the transistors next door).

This makes me feel stupid, but it is actually quite good news; it means that the design is fine and I just need to remake a stencil with the correct layer.

Anyway, after a lot more rework than I had expected, I ended up with this:

IMG_9500

It’s still an ugly board, but does it work?

Well, I hooked up 5V, GND, and data in to one of my test rigs and a LED to the LED outputs.

And it works; the LED is on when I expect it to be on and off when I expect it to be off. All three outputs are fine.

The next test will be some testing to see how it fares with switching high current. And I’ll probably want to make another one using the correct stencil and hook it up for 12V operation to verify that.





WS2811 expander part 3: PCB Revisions again…

More revisions.

I posted the design to /r/PrintedCircuitBoard, and of the comments said:

“Do you need pullups on the outputs of WS2811?”

And of course, I was confident the answer was “no”. For about 5 seconds. And then I measured the WS2811 I have in my breadboard; it gave a nice solid sink when it was on, and when it was off, just a fraction of a volt. Clearly not up to sourcing current to the NPN transistor.

The most likely explanation is that it’s an open collector output:

The collector on the output transistor is just left hanging – it’s only collected to the external pin. The voltage on an open collector can float up above the internal voltage of the IC as long as you don’t exceed the maximum voltage of the transistor

Open collectors are really useful if you want to have a bus architecture with multiple components able to pull the bus low, or if you aren’t sure what voltage of the output is going to be. Since the WS2811 can be used to drive LEDs tied to either 5V or 12V, it makes perfect sense. And it is confirmed by the internets.

Which means that the circuit needs to get a tiny bit more complicated:

image

Another pullup resistor is added to the mix. Really not a problem from the cost and assembly perspective as the design goes from 9 resistors to 12 resistors.

But, can I fit it in the current board layout without making it bigger?

I should probably add a parenthetical note here that says it’s often easier to go with a bigger layout, and in fact if you are going to hand solder a board, you *should* go with a bigger layout. Though I’m not sure how practical it is to solder the MOSFETS by hand since the base pad is so big…

Anyway, here’s what the board looked like before:

I need to put a resistor between each of the traces that head from the WS2811 over to the transistors. Hmm.

I initially just tried to fit them in there, and with a big of rerouting, I was able to make it fit. Technically.

Then I decided that it would be a lot easier if I moved the vertical ground trace underneath the transistors and used that to provide the ground connection to the transistors. That meant I could move the VCC vias around more easily, and could do the following:

image

The fit in reasonably well.

I *think* it’s ready to order the first version of the board, but there’s one more step. I now have on hand the WS2811 ICs and both kinds of transistors. So, I printed out a design with the copper layers shown, and did a test to see if the components really fit on the board.

image

That shows the WS2811 on the left, the MOSFET on the right, one of the NPN transistors and then a tiny 0805 10K resistor at the top. Everything looks like it will fit fine.

I ordered 3 boards for $7.10 from Oshpark, which is my usual supplier for prototype boards if they are small.


WS2811 expander

I’m starting a new decorations project that will involve a fair number of standard LEDs, but not addressable ones. I have a few different use scenarios:

  1. Plug into a standard USB power supply.
  2. Power directly with 120 VAC.
  3. Power either with 5V or 12V and have an easily way to control brightness…

The first two are just wiring, but the third needs something more. My target market is quite used to using WS2812 addressable LEDs, so I’m going to build something that works in that environment.

Quick requirements list:

  1. Runs on 5V or 12V.
  2. Uses WS2812 protocol.
  3. Can drive significant loads (at least 10 amps).
  4. Small and cheap

The second requirement is pretty simple; you can buy the WS2811, which works exactly the same way as the WS2812 lights but is in a separate package. And it very conveniently has a little internal power supply that can use 5V or 12V by changing the value of one resistor. Here’s a typical 5V circuit:

image

Looks very nice, and almost does what I want, except that it’s designed to only sink 18.5 mA, which is quite a bit less than my 10 amp goal. I don’t strictly have a use for 10 amps right now, but I will likely need at least 1 amp for some uses.

So, I’m going to lean on the IRLR7821PbF MOSFET that I used in my backyard controller, which it looks like I can get for about $0.14 each. It’s pretty easy to use:

image

I will just drive the gate of the MOSFET with the output of the WS2811, and when the MOSFET turns on, it will pull the LED1 line low, turning on the LED.

Except… the WS2811 outputs are active low, and the MOSFET in this arrangement is active high. So

image

We add an NPN transistor. If the input is low, the transistor is off and the gate on the MOSFET is pulled high by the 10K resistor. If the input is high, the transistor is on, the gate is pulled low, and the MOSFET is off.

That will be duplicated for all three channels, and we end up with the following:

image

R9 and R10 are really just empty holes; you bridge R9 with wire if you want to use 5V and R10 if you want to use 12V.

I unfortunately generally forget to take snapshots during PCB design, so here’s the V1 state:

image

The MOSFETs have lots of 4s on them – I don’t know why – and to the left are the bipolar transistors and the resistors required for that part of the circuit.

The power input holes and the LED holes are designed to use Molex KK 396 headers and connectors so you can either use those or hand wire.

The lower left shows the jumper locations to set voltage.

All resistors are 0603 sized; that makes them compact but still relatively easy to populate.

The only weirdness are the three through-holes next to the LED terminals. I need to tie that backside ground trace to the frontside MOSFET terminal, but I was having trouble fitting enough vias to carry the current. Instead, I just used the through holes, which will be filled with solder and therefore be able to carry plenty of current.

The board is about 40mm x 28mm in size. I might jump up to 0805 resistors to make it a little easier to fabricate.

Before I send it off to be fabricated, I need to have the transistors in hand so I can verify the layout works.






Backyard controller design #4 – Software

The controller software lives here on github. My current software development environment is Visual Studio Code with Platform IO installed on top of it. It’s quite a bit better than the Arduino IDE for my usage patterns.

I’ve done my best to build a flexible and well-abstracted design. With the exception of main.cpp, all of the C++ classes are written in the include (.h) files so that I don’t have to deal with multiple files per class.

Here are the classes and a brief description of what they do:

  • Action – takes in a textual description of an action (on, off, toggle, plus some dim levels) and converts it to a numeric value. This is a nicer pattern to use than an enum as the parsing code can live here.
  • Device – an abstraction for a device that I want to be able to control. It has a text name, a group name, an output pin, and a timeout (in 10 mS units). If you pass it a name and an action, if will implement that action if the name matches either the text name or the group name of the device.
  • HardWiredController – the physical controller (not yet built) has a group of switches connected via resistors to the input line, giving a varying voltage based on which switch is pressed. This code uses the ADC in the ESP to get the current value, figures out what button was pushed, and performs the appropriate command.
  • Main.cpp – the main setup and loop code. Mostly just delegates out to other classes.
  • MainPage.h – the text of the web interface page for the controller
  • Manager.h – the manager for all the devices. It creates an array of devices and then handles dispatching commands to them, getting status strings, handling timeouts, etc.
  • OnIfAnyDevice.h – the 12V power supply needs to be turned on if any of the lights are on. This class looks at the state of the devices passed in through the constructor and turns itself on if any of them are on.
  • StairSensing.h – The program needs to turn on the house lights if the stair lights are turned on. This code tracks whether the stair lights have been turned on and switches the house lights on and off as necessary.
  • WebServer.h – The code that handles requests for the UI page and url action commands.

The main loop runs with a 10mS delay so that every time through the loop is roughly that long; that is needed to implement the timeouts in the device class. I could have done this in a more sophisticated manner but what I did is clear and good enough for the requirement.

The Manager and Device classes warrant a bit more discussion. They are use a software pattern called “Chain of Responsibility”; there are basically 5 devices that all look alike, and the manager just passes the action through to all of them and the device that the action belongs to deals with it.

This vastly simplifies the manager class – otherwise it would have to check every string and figure out which device to pass it to – and makes it really easy to implement group devices; the “lights” group refers to all light devices. It also makes it easier to implement the OnIfAnyDevice class, which otherwise would have required special case code.


Pages:123456